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ABSTRACT

Let G be an abelian group of order n and let R be a commutative ring
which admits a homomorphism Z[{,] — R, where {, is a (complex)

primitive n-th root of unit y.Giv en a finiteR[G]-module M, we derive a

form ula relating the order ofM to the product of the orders of the various

isotypic components MX of M, where x ranges o ver the group of R-valued

characters of G. For G cyclic, we give conditions under which the order

of M is exactly equal to the product of the orders of the MX. To derive

these conditions, we build on work of Aljadeff and Ginosar and obtain,

in particular, a new criterion for cohomological triviality which improves

upon the well-kno wn criterion of T. Nalayama. We also give applications

to abelian v arieties and to ideal class groups of mm ber fields, obtaining
in particular some new class number relations. In an Appendix to the

paper, we use étale cohomology to obtain some additional class number

relations. Our results also have applications to “non-semisimple” Iwasaw a
theory, but we do not develop these here. In general, the results of this

paper could be used to strengthen a variety of known results involving

finite R[G]-modules whose hypotheses include (an equivalent form of) the

following assumption: “the order of G is invertible in R”.

0. In troduction

Let A be an abelian varietydefined overa global field F' and let K/F be a
quadratic extension with Galois group G. Write A! for the abelian variety dual
to A. For eah of the two characters y of G, let AX (resp. (A")X) be the twist
of A (resp. A') by x. In [8] the following result was established.
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THEOREM 0.1 ([8, Corollary 4.6]): With the above notations, assume that the
follo wing conditions hold.
(i) The Tate-Shafarevich group II(Ag) of Ak is finite.
(ii) H{(G, AX(K)) = H (G, (A)X(K)) = 0 for all in tegersi and all characters
x of G.

(iii) Both A(F,) and A*(F,) are connected for all real primes v of F.

Then
(A )] = [MARIAD)] - []IH (G AR,
veT

where T is the set of primes of F which ramify in K/F or where Ap has
bad reduction, w is a fixed prime of K lying abovev (for each v € T), and
Gy = Gal(K,/Fy).

In attempting to generalize the above theorem to extensions of degree greater
than 2, w ew ereled to the follo wing general problem. Given a finite abelian
group G and a finite R[G]-module M (where R is a commutativ ering which
contains the values of all characters of G, e.g. R = Z[(,], where (, is a complex
n-th root of unit y),find a formula for the order of M in terms of the orders
of the various isotypic components MX of M, where y runs over the group of
characters G of G and MY = {m € M: om = x(o)mforallo € G}. If n
denotes the order of G and one considers R, = Z[1/n] ®z R, then it is easy to
find a formula of the desired type for the order of M, = Z[1/n] ®; M (which we
regard as an R.[G]-module in the natural way), since there is an isomorphism

M. ~PM¥=FPe M.,
X X

where €| = (1/n) ® Egec X(o)o is the idempotent of the group ring R.[G]
corresponding to x € G (here Y denotes the inverse of y). However, if for
example nM = 0, then M, = 0 and no information is gained on the order of
M. A different approach involves the “quasi-idempotents”

ex =Y X(7)o € RIG],

ceG

which satisfy Ei = ne,. Since £, M no longer equals MX, it is natural to expect
that the modules MX /e, M will play a role in our considerations. For y = x°
(the trivial character of G), MX /e, M is the familiar Tate cohomology module

MY/ NegM = ﬁO(G, M), where Ng = )~ . 0 is the norm element of R[G]. In

general, ﬁg(G,M) ef Mx /e, M = H(G, My), where My is the Y-twist of M
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(see Section 1 for definitions). Then the solution to the general problem stated
abo e is given by

THEOREM 0.2: If G is cyclic and M is a finite R[G]-module, then

M) TTENG, M) /S, ()] = T] 1M,

XE@ Xe@

where Sy (M) (x € G) is the submodule of ﬁg(G,M) defined in Section 2,
formula (6). Equivalently,

(M) = [T lex]- JT 1S (1)),

XG@ Xe@

(Analogous formulas exist for any finite abelian group G. See Theorem 3.1.)

If M is n-divisible, i.e., has no n-torsion, then the modules ﬁg(G., M), and
therefore also the modules S, (M), vanish. In this case the formulas of the
theorem read

(1) (M] = [T 1] = [T [ M.

xeé Xeé

However, w ecould have obtained these formulas using the arguments given
before the statement of the theorem. The interest of Theorem 0.2 is that there
may exist other instances (besides that in which M is n-divisible) where the
modules }AIQ(CLMA) = ITIO(G,MY) vanish, and therefore (1) holds. Regarding
the vanishing of H°(G, M) for an arbitrary G-module M, w euse in Section
4 the impressive results of E. Aljadeff and Y. Ginosar [1], [2] to establish the
follo wing theorem.

THEOREM 0.3: Let G be a finite group such that all Sylow subgroups of G are
cyclic! and let M be a finite G-module. Suppose that H(H, M) = 0 for all
subgroups H of G of prime order. Then H°(H, M) = 0 for all subgroups H of
G.

The above theorem is in fact a corollary of the following striking criterion for
cohomological triviality.

THEOREM 0.4: Let G be a finite group and let M be a G-module. Then M
is cohomologically trivial if and only if ﬁiP(I-LM) = ﬁiP+1(H7M) = 0 for
every p-elementary abelian subgroup H of G, where i, is an integer (which may

1 See Section 4 for a description of these groups.



64 C. D. GONZALEZ-AVILES Isr. J. Math

depend on p). In particular, if every Sylow subgroup of G is either cyclic or is
a generalized quaternion group?, then M is cohomologically trivial if and only
if H-Y(H,M) = H°(H, M) = 0 for all subgroups H of G of prime order.

(We remind the reader that a G-module M is said to be cohomologically
trivial if ﬁi(H, M) = 0 for all integers i and all subgroups H of G.)

The abov e theorem is a significant improvement of the well-known criterion for
cohomological triviality established by T. Nakayama in the mid 1950’s (see [23,
Theorem IX.5.8 (i)<(ii), p. 145]; see also the remarks following the statement
of Corollary 4.4 below).

Using the above criterion, we obtain results of the following type.

THEOREM 0.5: Let G be a cyclic group of order n and let M be a finite R[G]-
module, where R = Z[(,]. Assume that }AIS(H,M) = 0 for ev ery subgroup H
of G of prime order and every character x of H. Then flg(G, M) = 0 for all
characters ¢ of G and

(M) = [T 1M = [ lew ).

vel ped

If G is a cyclic 2-group and M is a G-module, set M = {m € M: 7m = m},
where 7 is the unique element of order 2 in G.

COROLLARY 0.6: Let G be a cyclic group of order 2", where n > 1, and let
M be a finite R[G]-module, where R = Z[(2+]. Assume that M = (1 + 7)M.
Then

(M] =TT = [ lexM].
x€G x€EG
In Section 5 we apply the results of the preceding sections to Tate—Shafarevich
groups of abelian varieties. The main result obtained is the following general-
ization of Theorem 0.1.

THEOREM 0.7: Let K/F be a cyclic Galois extension of global fields with Galois
group G of order n and let A be an abelian variety defined over F' with complex
multiplication by Z[(,). Assume that the following conditions hold.
(i) The Tate-Shafarevich group (A ) of Ak is finite.
(i) H(G, A(K)) = H!(G, A*(K)) = 0 for all i and all x € G.
(iii) A(Fy) is connected for all real primes v of F.

2 Such groups G have the property that ev ery abelian subgroup ofG is cyclic. See
[3, Theorem XTL.11.6, p. 262].
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Then
Mmi(Ax)] = JTm(ax)] TS m(Ax))],
x€G x€@
where, for each x € G, Sy(II(Ag)) is the submodule of ﬁg(G, IM(Ag)) defined
in Section 2, formula (6). Further, for ead x € G, [Sy(II(Ag))] divides

[T (2, (G, A(KL)),

veETy
where Ty, and x,, are as in the statement of Corollary 5.6 below.

In Section 6 we apply the results of the preceding Sections to study ideal class
groups of number fields. The following results are obtained.

For any number field F' and any finite Galois extension K of F' with Galois
group G and unit group Uk, wewrite II'(G, Ug) (resp. b*(G,Uy)) for the
kernel (resp. cokernel) of the map H'(G,Urx) — [, H(Gy,Uy), where, for
each prime v of F', w denotes a fixed prime of K lying above v and G,, is the
decomposition group of w in G. F urther, we write C i and h for the ideal class
group and ideal class number of K, respectively. Similar notations apply to F.

THEOREM 0.8: Let K/F be a finite Galois extension of number fields with
Galois group G of exponent e. Then there exists a rational number r, whose
numerator and denominator are divisible only by primes that divide e, such that

[Cg} =T- hF.
In particular, a prime pfe divides [C$] if and only if it divides hp.

THEOREM 0.9: Let K/F be a finite Galois extension of number fields with
Galois group G such that all Sylow subgroups of G are either cyclic or generalized
quaternion. Assume, in addition, that the following conditions hold for each
subextension L/ F of K/F of prime index.

(a) K/L is ramified at some prime, and

(b) b (H,Uy) = *(H,Uy) = 0, where H = Gal(K/L).
Then the G-module C'c is cohomologically trivial.

THEOREM 0.10: Let K/F be a finite Galois extension of exponent 2. Then
there exists an integer t such that

hK/hF = Qt- H [EXCK}.,

X#Xx°
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where Ck is the ideal class group of K, hx (resp. hp) denotes the order of C
(resp. Cr), and the product extends over all non-trivial dharacters of G.

If K/F does not have exponent 2, then we need to extend scalars. Set Cx =
Z[¢]@7zC K, where e denotes the exponent of K/F, and define ¢(e) = [(Z /eZ)™].
Then the following holds.

THEOREM 0.11: Let K/F be an abelian extension of number fields with Galois
group G of exponent e. Then there exists a rational number r, whose numerator
and denominator are divisible only by primes that divide e, such that

(hi/he)?D = v ] [exCx].

X#X

COROLLARY 0.12: Let p be an odd prime and let K = Q((,)* be the maximal
real subfield of Q((,). Write h™ for the class number of K and G for the Galois
group of K/Q. Then there exists a rational number r, whose numerator and
denominator are divisible only by primes that divide (p — 1)/2, such that

()2 U) = [T lexCx)

xe@

In particular, p divides h* if and only if p divides [e, C k] for some character y
of G.

The preceding results (0.10-0.12) cannot be considered satisfactory, because
they give no information on the integers [¢, C']*>. How everthere exist clear
indications that the integers [¢, (] are related to the class numbers of the
various subextensions of K/F. See the Example and Remarks follo wing the
statement of Corollary 6.7 below. Regarding the last assertion of Corollary
0.12, it is of course an allusion to V andier’s conjecture, which asserts that
h* is never divisible by p. Concerning this well-known conjecture, the results
of this paper seem to suggest that folile wing statement is true: V andier’s
conjecture holds for p if and only if p does not divide Ay, for every subextension
L/Q of Q(¢,)"/Q of prime degree.

In an Appendix to the paper, w euse étale cohomology to obtain certain
varian ts of Theorem 0.8 abwe. See Theorem A.4 and Corollary A.5 below. We

3 B. de Smit [6] has obtained a precise formula similar to that of Theorem 0.10
for any elementary abelian extension of number fields. See the remarks following
Corollary 6.7 below. I'm indebted to F. Lemmermeyer for calling my attention
to de Smit’s work.
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also note that the results of this paper have applications to “non-semisimple”
Iwasa wa theory, which we hope to develop in a future publication.
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1. Preliminaries

Let G be a finite group of exponent e and let x: G — F be a character (one-
dimensional representation) of G with values in a field F' containing a primitive
e-th root of unity (. (e.g., F' = C). A commutative ring with unit R is said to be
sufficiently large for G if there exists a ring homomorphism Z[(,] — R. For
example, Z[(.] and F,[z]/(zP") (when e = p™ is a prime pow er) are sufficiertly
large for G. Since x: G — F factors through Z[{.], w emay compose y with
the given homomorphism Z[{,] — R to obtain a multiplicative map G — R.
This map will also be denoted by x. Thus y: G — R is an “R-valued character
of G”. Clearly, the values of x lie in R* (the group of units of R), so y is an
element of G & Hom(G, R*).

Now let R be sufficiently large for G and let M be an R[G]-module. Consider
the augmentation homomorphism

ay: R[G] = R, Z To0 > Z roX(0).
o€l ocelG

For each ¢ > 0, consider further the R-module
H, (G, M) = Extj g (R, M),

where R is being regarded as an R[G]-module through the map a,. For i = 0
we have

HY(G. M) = Hompg;(R, M) = MX,
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where Mx L& {m € M: om = x(o)m for all o0 € G}.

Next consider the element

= 3 (o) € R[G,

ocel

where Y is thec haracter inverse to Y, i.e., X(¢) = x(0)~! for all 0 € G. It is
not difficult to check that e, M C MX. Set

HY(G,M) = MX/e\ M.

We note that if M is a Z[G]-module and x is the trivial character of G, then the
Z-modules H (G, M) and flg(G, M) defined above are the well-known groups
H(G,M) =M% and H°(G, M) = M%) NgM in group cohomology. In general,
the R-modules H. (G, M) and fIg(Cﬂ M) are “usual” cohomology modules of a
twisted form of M. Indeed, let M5 denote the R-module M endow ed with the
new G-action

o-m=X(o)om (0€GmeM).

Then
Hi(G.M) = H(G. My)

for all + > 0. The above formula follows in a standard way from the fact that
the functor M +— MX is the composite of the functors M +— MXO, where \°
is the trivial character of G, amd M — Msx, the second of which is exact and
right adjoint to an exact functor, namely M — M,,.

2. Cyclic groups

We assume now that G is a finite cyclic group of order n. Let M be a finite
R[G]-module, where R is sufficiently large for G. Then there exists a ring
homomorphism Z[{,] — R, where (, is a primitive (complex) n-th root of
unity. We will continue towrite (, for the image of (,, in R under the above
homomorphism (this should not be cause for confusion). We now choose and
fix a generator 7 of G and define a character x: G — R* by x(7) = (;,- Then
an y other haracter of G has the form y?, where 0 < i < n — 1 (by convention
XY is the trivial character of G, i.e., Y?(¢) = 1 for all o € G).

Now recall the elements e,; = Y _X'(0)o € R[G], where 0 < i <n — 1.
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We have

n—1
1—24” o= 1@ -
=1
- n—1

O e -c=a Tl -

j=1 j=0

J#i
In particular the norm element £,0 = 3 .0 € R[G] factors as

n—1

Exo = H(T - <7]1>
j=1

Our objective no w is to derie a formula connecting the order of M to the orders
of the various isotypic components MX' of M. To this end, we fix the following
notation. The order of a finite module M will be denoted by [M]. Further, if a
is an element of R[G], Kera will denote the kernel of multiplication by a on M
(this nonstandard notation for the a-torsion submodule of M is a conveniernt one,
as will become apparent below). Observe that MX' = {m e M:mm = {im} =
Ker(7 —(!). Now, in order to make our general argument more transparent, we
will begin by examining the simplest case, that in which n = 2. Consider the
follo wing exact sequence (whid is available for any n)

(2) 0 — Kereyo — ML — HO (G, M) = 0

where g is the multiplication by ,0 map. When n = 2, Kere,o = Ker(1+71) =
Ker(r — (—1)) = MX (see above), so we immediately obtain from (2)

[M][HS (G, M)] = [MX"][MX].

This is the desired result for n = 2.

When n = 3 the situation is more complicated, because e,0 = (17— (3) (7 — (3)
is the product of two linear factors, and therefore Kere,o is not equal to Mx
for any i. However, we can relate Kere,0 to modules of the form Mx by means
of the exact sequence

0— MX = Ker(r — (3) — Kersxo—wl—ﬂ\/lx — Q1 —0,
where 7 is the multiplication by (7 — ¢2) map and

@1 = Coker o1 = MX/(1 — C;) Kere,po.
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Now since
(r— ) Kereyo = MXN (1= G)M
we have
Qi =~ HY(G, M)/5:(M).
where

S1(M)=MXN(r— <§)M/5XM
Thus, writing So(M) = {0}, we obtain
[M][H%(G. M)/So(M)][HY(G, M) /Sy (M)] = [M¥")[MX][M¥],

which is the desired result for n = 3.
We now present the general argument.

For each ¢ € {0,1,...,n — 2}, there is an exact sequence
n—1 n—1 )
(3) 0= Ker [[ (r—¢) = Ker [[(r—¢)F— - Q=0
j=i+1 j=i

in which ¢; is the multiplication by H] Z+1(T ¢J) map and

n—1
Qi = Coker p; = MX/ H (r—¢) KerH(T_CJ

Jj=1+1

Note that (3) for ¢ = 0 is precisely the exact sequence (2), because
ngol (1 —¢)) = ™ —1 = 0 and, therefore, Ker ngol (r—¢)) = M. Also
note that, since

n—1 n—1 n—1
[ e-Kee [[-c)y=mxn [ r-¢)Mm
j=i+1 j=i j=i+1
we have
(4) Qi ~ HY% (G, M)/Si(M),

where S;(M) is the submodule of ITI)? (G, M) given b y

(5) Si(M) = <MXmH(T—gJ )/ M.

J=i+1
Now, by (3),
[Ker [T} (r =] [Mx]
KerIT/=L (r =) Qi
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fori=0,1,...,n—2. Multiplying these equalities together we obtain, since the
product of the left-hand side terms telescopes,

(M) _ T [MX]

EEE N VS (N
Thus, b y (4), the follaving holds.

THEOREM 2.1: We have

] TLUS (6. a0/ = T 1

where S;(M) (i =0,1,...,n —2) is the submodule ofﬁg,- (G, M) given by (5).

We will now restate the above theorem in a form whid is more suitable for
generalization. Set H;L;Z-l_s_l(r — ()M =M ifi =n—1. Now, for ¢y = y' € G,
0 <1< n-—1, define

(6) Sy(M) = S;(M) = (MX‘ n nf[l (r — (ﬁ;)M) /EXiM.

j=it1
Then Theorem 2.1 may be restated as follows.

THEOREM 2.2: If G is a cyclic group and M is a finite R[G]-module, then

(M) - T] UG, M) /Sy (M) = ] (M),
ved ped

where Sy, (M) (for ¢ € G) is the submodule of ﬁg(G,M) given by (6). An

equivalent statement is

(M) = ] lesM]- TT[Su(M)).

ved ved

3. Abelian groups

In this section we extend Theorem 2.2 to arbitrary finite abelian groups. We will
consider first abelian groups which are the direct product of tw o cyclic groups.

Let K and K5 be (finite) cyclic groups and let G = K; x K5 be the direct
product of K7 and K. Let M be a finite R[G]-module, where R is sufficiently
large for G (for example R = Z[(.], where e is the exponent of G and (. is a
fixed complex e-th root of unity). Write M, for the R[G]-module M regarded
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as an R[K;]-module (: = 1,2). Note that, since G =K, x Ixz each character
X € G may be written uniquely as y = x, - X,, where x, € I&l and y, € Ixz
We have

MY = (MY,
(note that since My' is an R[G]-module in a natural way, it is meaningful to
consider the restricted module (My')k,). To ease notation, we will write the
abo ve equaliy as “MX = (MX1)Xz2”. (The reader should bear in mind, however,

that in an expression of the form “MX1” (resp. “NX2"), M (resp. N) is being
regarded as a Kj-module (resp. Ko-module).) Now we have

[ort- I I o)

x€G X1 €K1 x, €K

Next, by Theorem 2.2,

[T traye] = o). [[ (B (e M¥)/S,, (M)],

X, €K> X €ER>

where S, (M*1) is given by (6) with ¢» = x, and M = M*: in that formula.
Applying Theorem 2.2 once again, we obtain

e} T (B, 5,0y /Sy, ()] T THS, (Ko, 0% /5, (%)) = T 1824
X1€f<1 X2€§2 xeG

In general, the following holds.

THEOREM 3.1: Let G be a finite abelian group and let M be a finite R[G]-
module. Let G = Ky x -+ x K, (r > 1) be a decomposition of G into a direct
product of cyclic groups. For 0 <i: <r —1, set G; = K1 X --- x K;, where G
is defined to be 0. Then

H [T (2 (5 m¥)/s, (M) = T M7,

=1 x, €k, =tel
w/:eé,-,l

Proof: This may be proed without difficulty by induction, writing G =
(K; x -+ x K1) x K, and arguing as in the case r = 2 above. |
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4. A criterion for cohomological triviality

In this section w eestablish a criterion for cohomological trivialit y using an
important result of E. Aljadeff and Y. Ginosar. We then apply this criterion
to derive sufficient conditions under which the order of a finite R[G]-module M
(where G is cyclic and R is sufficiently large for G) equals the product of the
orders of the various isotypic components MX of M as y ranges over G. In this
section “G-module” means Z[G]-module.

We begin with

THEOREM 4.1 (Aljadeff): Let G be a finite group and let M be a G-module
which is also a commutative ring with unit. Assume that H°(H, M) = 0 for
every subgroup H of G of prime order. Then fIO(I-L M) = 0 for every subgroup
H of G.

Proof:  See [1, Corollary 0.2]. The proof uses a tensor induction argument for
skew group rings M;H, where H is a subgroup of G and t: G — Aut(M) is the
map defining the action of G on M. |

Remark: The commutativit y assumption of the theorem is crucial.See [1] for
an example of a group G and a non-commutativ e ringM/ for which the theorem
fails. The follo wing is the correct generalization of Theorem 4.1 when M is a
non-commutativ e ring with unit:if I;TO(H., M) = 0 for every elementary abelian
subgroup H of G, then HO(H, M) = 0 for every subgroup H of G. See [2,
Theorem 1].

Our objective now is to extend the class of G-modules M to which Theorem
4.1 applies (at the expemderestricting the class of groups G, as it will turn
out). We need the following result.

THEOREM 4.2 (Aljadeff-Ginosar): Let R be a ring with unit, let G be a finite
group and let M be a module over a crossed product algebra R * G. Then

proj.dim. 5, oM = sup{proj.dim., y M: H < G elementary abelian}.
Proof: See [2, Theorem 3]. |

Remark: Theorem 4.2 is a corollary of the following generalization (due to
Aljadeff and Ginosar) of a w ell-known theorem of Chouinard [5]: an R * G-
module M is w eaklyprojective (resp. projective) if and only if M is R = H-
w eakly projectie (resp. projective) for every elementary abelian subgroup H of
G. See [2, Theorem 2].
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We now have

THEOREM 4.3: Let G be a finite group and let M be a G-module. Then M
is cohomologically trivial if and only if Hi»(H, M) = Huw+'(H,M) = 0 for
every p-elementary abelian subgroup H of G, where i, is an integer (which may
depend on the prime p).

Proof: By the Nakayama—Rim theorem [23, Theorem IX.5.8, (ii)<(iv), p. 145],
a G-module M is cohomologically trivial if and only if the Z[G]-projective di-
mension of M is < 1. Now Theorem 4.2 shows that M is cohomologically trivial
if and only if M is H-cohomologically trivial for every p-elementary abelian sub-
group H of G. Nakayama’s criterion [23, Theorem IX.5.8, (i)<(ii), p. 145] now
completes the proof. ]

COROLLARY 4.4: Let G be a finite group such that all Sylow subgroups of G
are either cyclic or generalized quaternion, and let M be a G-module. Assume
that H-'(H, M) = H°(H, M) = 0 for all subgroups H of G of prime order.
Then M is cohomologically trivial.

Proof:  The class of groups G which satisfies the hypothesis of the corollary
is exactly the class of groups G which ha vethe property that every abelian
subgroup of G is cyclic. See [3, Theorem XII.11.6, p. 262]. The corollary now
follo ws from the theorem and the periodicity of the cohomology of cyclic groups.
|

Remarks: (a) The corollary applies in particular to G = Q2 , the generalized
quaternion group of order 2" (n > 3). Note that this group has a unique
subgroup H of order 2.

(b) The classical Holder-Burnside-Zassenhaus theorem asserts that a group
G has the property that all its Sylo w subgroups arecyclic if and only if G is
a split extension (i.e., a semi-direct product) of tw o cyclic groups whose orders
are relatively prime. See [21, Theorem 10.26, p. 246] and [29, Theorem V.3.11,
p. 175]. Thus Corollary 4.4 applies to all cyclic groups (but not to other types
of abelian groups) and to certain types of non-abelian finite groups (other than
Q2 ), for example the dihedral groups of order 2n for every odd integer n > 3.

(c¢) Theorem 4.3 and Corollary 4.4 represent a significant improvement of the
w ell-knavn criterion for cohomological triviality established by T. Nakayama in
the mid 1950’s (see [23, Theorem IX.5.8 (i)<(ii), p. 145]). For example, ifG is
a cyclic group of order p™ (where p is a prime and n > 1) and M is a G-module,
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then by Corollary 4.4 the cohomological triviality of M may be chec led “at the
first layer”, i.e., by checking whether I;Ti(H,M) vanishes for ¢ = —1,0 and H
equal to the unique subgroup of G of order p. By contrast, Nakayama’s criterion
requires chec kingthe vanishing of these cohomology groups for the full group
(i.e., for H = G), a v erification whih depends on the (possibly very large) value
of n.

Recall now that if H is a finite cyclic group and M is an H-module such
that the cohomology groups Hi(H, M), i = 0,1, are finite, then the Hebrand
quotient h(M) of M is defined by

(M) = [H°(H, M)]/[H" (H, M)].

It is a well-known fact that the Herbrand quotient of a finite module is 1. Now
Corollary 4.4 yields the following varian t of Theorem 4.1.

COROLLARY 4.5: Let G be a finite group satisfying the hypothesis of Corollary
4.4 and let M be a G-module. Assume that for each subgroup H of G of prime
order the Herbrand quotient of M, when regarded as an H-module, is defined
and equal to 1 (for example, M may be a finite G-module). Assume further that
fIO(I-L M) = 0 for all subgroups H of prime order. Then M is cohomologically
trivial. In particular H°(H, M) = 0 for all subgroups H of G.

Remark: The above corollary will be appliedhe next section to establish
an interesting fact concerning abelian varieties defined over local fields. See
Theorem 5.3 below.

Next, w ewill combine Theorem 2.2 and Corollary 4.5 to obtain conditions
which will ensure that the order of a finite R[G]-module M, where G is cyclic
and R is sufficiently large for GG, equals the product of the orders of the various
isotypic components MX of M as y ranges over G.

THEOREM 4.6: Let G be a finite cyclic group and let M be a finite R[G]-
module, where R is sufficiently large for G. Assume that ITIS(H., M) = 0 for
every subgroup H of G of prime order and every character x of H. Then
lflg(G7 M) = 0 for all characters ¢ of G, and

(M) = [T 1M = [ lewM].

vel ped

Proof: The stated formula will follow from Theorem 2.2 once w epro vethe
first assertion. Let ¢ be any character of G and let M be the twist of M by
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Y (see §1). Let H be a subgroup of G of prime order. As an R[H]-module,
MJ is canonically isomorphic to My, where Y = |y is the restriction of ¥
to H. Therefore HO(H, M) ~ HO(H, M) ~ ﬁg(H,M) = 0. Now Corollary
4.5 shows that H(G, M) is zero, whence ﬁg(G, M) is zero and the proof is
complete. |

Remarks: (a) By Theorem 4.1, a result analogous to Theorem 4.6 holds true
if G is an y finite abelian group and the finite R[G]-module M has the structure
of a commutativ e ring with unit.

(b) If G is a cyclic group of order p™, where p is a prime and n > 1, the number
of conditions to be checked in order to apply Theorem 4.6 is independent of
n. See the remarks following the proof of Corollary 4.4.

Now let G be a cyclic 2-group and let 7 denote the unique element of G of
order 2. For any finite R[G]-module M, define

(7) Mt ={me M:mm=m}.

Then M is a submodule of M con taining (1 +7)M.
Theorem 4.6 has the following satisfying corollary.

COROLLARY 4.7: Let G be a cyclic group of order 2", where n > 1, and let M
be a finite R[G]-module. Assume that M = (1 + 7)M, where M is given b y
(7) and T is the unique element of G of order 2. Then

(M) =[] 1mM¥] = ] [ewM].
e yel

Proof: This will follow from Theorem 4.6 once we check that PAIQ (H,M) =0
for H = (1) and x equal to the nontrivial ¢ haracter of H. But

ﬁg(m M) = M/(1—7)M = H ' (H,M)

has the same order as HO(H, M) = M+ /(1+ )M, which is zero b y hpothesis.
|

5. Applications to abelian v arieties

Let F be a global field, i.e., F' is a finite extension of Q (the “number field
case”) or is finitely generated and of transcendence degree 1 over a finite field
(the “function field case”). The following notations will remain in force through-
out the rest of the paper. Let F' denote a fixed separable algebraic closure of
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F. We will write T for the absolute Galois group Gal(F'/F) and p for the char-
acteristic exponent of F'. For eac h primev of F, we choose once and for all a
prime v of F lying abovev and write T, for the decomposition group of 7 in T,
i.e., Ty = {0 € I ¢(¥) = v}. Then F, := Fj is a separable algebraic closure of
F, and T', may be identified with Gal(F,/F,). Given a (discrete, continuous)
I-module M, H(F, M) will denote the i-th Galois cohomology group H*(T', M).
For i =1 or 2, we set

I (F, M) = Ker {Hi(F., My =] Hi(Fv,M)}

all v

and
bi(F, M) = Coker [Hf(F, My =] Hi(Fu,M)},
all v
where the products extend over all primes v of F'.

Let A be an abelian variety defined over F' and let K/F be a finite Galois
subextension of F//F with Galois group G. We will write A (resp. Ag) for
the abelian variet y A regarded as an abelian variety over F' (resp. K). Further,
At will denote the dual (Picard) varietyof A. Foreach prime w of K lying
abo e a prime v of F, we will write G,, for Gal(K,,/F,) and identify it with the
decomposition group of w in G.

PROPOSITION 5.1: Let w be an yprime of K, let v be the prime of F lying
below w and let L/F, be a subextension of K,,/F, such that H = Gal(K,,/L)
is cyclic. Then the Herbrand quotient of the H-module A(K,,) is 1.

Proof: Let f: A — A" be an isogeny and let Ay be the kernel of f. Then there

exists a natural exact sequence
0— Ap(K,) = A(K,) - AY(K,) =0,

where K, is a separable algebraic closure of K,. Taking Gal(K,/K,)-
invarian tsof the abo veexact sequence, w econclude that there exists an H-
module homomorphism A(K,) — A%(K,) with finite kernel and cok ernel.
Therefore h(A(K,)) = h(A*(K,,)), where h(M) denotes the Herbrand quotient
of the H-module M. On the other hand, local duality [16, 1.3.4, 3.7; I11.7.8]
(see also [15, Proposition 4.2]) implies that h(A(K,))h(A'(K,)) = 1. Therefore
h(A(K,))? = 1, whence the result follows. |
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Remark: When K, is non-archimedean of characteristic zero, there is an al-
ternative proof of Proposition 5.1 which makes use of a well-known theorem of
Mattuck. This proof (therefore) depends on the theory of the logarithm. See
[25, §4, (14)].

COROLLARY 5.2: Let v be a real prime of F. Then A(F,) is connected if and
only A%(F,) is connected.

Proof: By [16, 1.3.7], A(F,) is connected if and only if ﬁO(FU,A) = 0 or,
equivalently by duality, if and only if H*(F,, A*) = 0. The proposition (applied
to At and to some totally imaginary finite Galois extension K of F) shows that
the latter is equivalent to the vanishing of ETO(FU7 AY), i.e., to the connectedness
of AY(F,). 1

Remark: Corollary 5.2 was known to Yu. Zarhin in 1972. See [28, §3].

THEOREM 5.3: Let v be a prime of F and let w be a fixed prime of K lying
abo vev. Assume that the decomposition group G,, = Gal(K,/F,) satisfies
the hypothesis of Corollary 4.4. Assume further that A(L) = Ny, A(Ky)
for every subextension L/F, of K, /F, of prime index. Then the G,-module
A(Ky) is cohomologically trivial.

Proof: This follows at once from Proposition 5.1 and Corollary 4.5. ]

Remarks: (a) If G = Gal(K/F) satisfies the hypothesis of Corollary 4.4, then
so does G, for any w. On the other hand, let p denote the characteristic of the
residue field of F;, and let e and f denote, respectively, the ramification index
and residue degree of w in K/F. Further, let Gy and G denote the inertia and
first ramification subgroup of G, respectively. There exist group extensions

0> Go— Gy = Gy/Go =0

and
0—>G1—)G0—)G0/G1—)07

where G, /Gy is cyclic of order f, Go/G; is cyclic of order prime to p and
G; is a p-group. See [23, pp. 67 68]. It followsthat if Gy is either cyclic or
generalized quaternion and f is prime to the ramification index e = [Gy],
then G,, satisfies the hypothesis of Corollary 4.4. (See [23, Ex. IV.2.3, p. 71]
for conditions that will insure that G, is cyclic.)
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(b) Notations being as in the theorem, let K,,/L be a ramified extension of
prime degree p. Write [ for the residue field of L. F urther,let A denote the
Nefon model of A; and let A be the formal completion of A along its zero
section. Then there exists a natural exact sequence

A(l), — HY(H, A(K,,)) — H°(H, A(Ky)) — A(l)/pA(l) = 0,

where A([), denotes the p-torsion subgroup of the finite group A(l) (see [15,
Corollary 4.6]). It follo ws that the anishing of H°(H, A(K,)) is equivalent to
the vanishing of both A([), and HO(H, A(K,)). Regarding the vanishing of
ltAIO(H7 ﬁ([(w)), it seems likely that the methods of [15, §4] are strong enough
for finding sufficient conditions under which ltAIO(H7 fT(Kw)) vanishes. However,
w e do not pursue this matter here.

Next we recall the main theorem of [8]. Let T' be the set of primes of F' which
is formed by collecting together the primes that ramify in K/F and the primes
where A has bad reduction.

THEOREM 5.4: Notations being as above, suppose that the following conditions
hold.

(i) The Tate-Shafarevich group M(Ak) of Ak is finite.

(ii) H (G, A(K)) = H(G,A"(K)) = 0 for all in tegersi.

(iii) A(Fy) is connected for all real primes v of F.
Then

[M(Ar)] = M(Ap)] - [][H (G, A(K))]
veT
and
(G (AR = [[[H(Gu AGK)],
veT

where, for each prime v € T, w is a fixed prime of K lying abovewv.
Proof: See [8], Theorem 4.4. |

Remarks: (a) The above result, which was established in [8] for number fields
only, is in fact valid for arbitrary global fields. This holds because [16], which
w as the main reference for [8], cowers both the mimber field and function field
cases (one only needs to supplement some of the references made in [8] to results
from Chapter I of [16] with references to Chapter IIT of the same book).

(b) As pointed out by the referee of [8], the conditions of the theorem “[seem]

rather stringent but hold in fact quite often”. The results of Aljadeff and Ginosar
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explain why this is so. Consider, for example, the case of a cyclic p-group G,
where p is a prime number. Then condition (ii) of the theorem is equivalent
to the cohomological trivialit y of both A(K) and A'(K). By Corollary 4.4,
the latter is equivalen t to the wnishing of Hi(H, A(K)) and Hi(H, AY(K)) for
1 = —1 and 0, where H is the unique subgroup of G of order p. These conditions
do not seem stringent at all. (Note, furthermore, that if there exists an isogeny
f: A — At of degree prime to p, then H(H, A(K)) = 0 for all  if and only if
Hi(H, A(K)) = 0 for all i. See the proof of Proposition 5.1 above.)

(c) Condition (iii) of the theorem is vacuous if F' has no real primes. F urther-
more, Corollary 5.2 shows that it is equivalent to condition (B) of [8].

Henceforth, we will assume that K/F is a cyclic extension.

COROLLARY 5.5: Assume that G is cyclic. Then, with the hypotheses and
notations of Theorem 5.4,

[M(Ax)C] = [M(A)][H(G, M(Ax))]

and
[H(G.M(A)] = [TIA (G, AKL))].
veT
Proof: This is immediate from Theorem 5.4, using Proposition 5.1, the period-
icity of the cohomology of cyclic groups and the fact that the Herbrand quotient
of a finite module is 1. |

We now write n for the order of G and assume that A has complex
multiplication by the ring of integers R = Z][(,] of Q(¢,). Then M(Agk)
is an R[G]-module in a natural way, and we may apply to it the results of the
preceding sections. For eah character y of G we will write AX for the y-twist
of AT (see [17, §2]). Then there are isomorphisms

(A g)X = (M(Ax )3 ~ T(AR).

The next corollary results from applying Corollary 5.5 to the twisted abelian
variet y AX.

t This is a standard notation for the x-twist of an abelian variety. We have
adopted it in spite of the fact that some readers may be confused by it, in view of
the notations introduced earlier. It may help clarify matters to note that AX(K)
is an R[G]-module which is isomorphic to the twisted R[G]-module A(K), de-
fined in §1, whereas A(K)X (whic hw e primarily regard as an R-module) is
isomorphic to the R-module AX(F), where X is the inverse character of .
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COROLLARY 5.6: Suppose G is cyclic and let x be a character of G. Assume
that the conditions of Theorem 5.4 hold for the twisted abelian VarietyAg,.
Then
[M(Ax)X] = [M(AR)]AL (G, T(AK))]
and
[AYG.M(AR)] = [[ Y, (Gu. AKL))),
veTy
where Ty is the set of primes of F' which ramify in K/F or where A% has bad
reduction, and Y, is the restriction of x to G,,.

We now combine the above corollary with Theorem 2.2 to establish the main
result of this section.

THEOREM 5.7: Let K/F' be a cyclic Galois extension of global fields with Galois
group G of order n and let A be an abelian variety over F' with complex multi-
plication by the ring of integers of Q((,, ). Assume that the following conditions
hold.
(i) The Tate-Shafarevich group M(Ax) of Ay is finite.

(i) HL(G,A(K)) = H (G, AYK)) =0 for all i and all x € G.

(i) A(Fy,) is connected for all real primes v of F.
Then

m(Ax)] = T (A - T 1S (meAx)),
xXE€G xXEG

where, for each x € G, Sy(II(Ag)) is the submodule of ﬁg(G,]]I(AK)) given

~

by (6). F urther, for ead x € G, Sy (II(Ak))] divides
[T 18?, (Gu. A,

veTy

where Ty and x,, are as in the statement of Corollary 5.6.

Remarks: (a) Since A and AX are isomorphic over K, the finiteness of TII(A};)
is equivalent to that of (A ). Thus condition (i) of Theorem 5.7 implies that
condition (i) of Theorem 5.4 holds for all twists of A.

(b) Similarly, condition (iii) of Theorem 5.7 implies that condition (iii) of
Theorem 5.4 holds for all twists of A. Indeed, let v be a real prime of F' and let
K be a totally imaginary extension of F. By [16, 1.3.7], AX(F,) is connected if
and only if HO(G,, AX(K,)) ~ ﬁ% (G, A(Ky,)) is zero. On the other hand,
since K,/ F, is quadratic,

[HY (G, A(K))) = [H (G AK))] = [H (G, A(K))],
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by the proof of Corollary 4.7 and Proposition 5.1. Thus AX(F,) is connected if
and only if fIO(Gw, A(K,)) is zero, i.e., if and only if A(F,) is connected.

(c) If G is a cyclic p-group, where p is a prime, and H is the unique subgroup
of G of order p, then condition (ii) of Theorem 5.7 is equivalen t to the condition:

(i) Hi(H, A(K)) = H.(H,A"(K)) =0 for i = —1,0 and all y € H.

See the remark follo wing the statement of Theorem 5.4. When p = 2, the
abo ve condition needs only be hecked for y = x°, the trivial character of H.

(d) Theorem 5.7 generalizes Corollary 4.6 of [8]. As noted in the introduction,
the search for such a generalization motivated the writing of this paper.

6. Applications to ideal class groups of number fields

Let F be a nunber field, let F be a fixed algebraic closure of F' and let
[' = Gal(F/F). We will write O for the ring of integers of F', Up for its group
of units and Zr for the group of fractional ideals of F'. The subgroup of Zr of
principal fractional ideals will be denoted by Pr and identified with F*/Up via
the canonical map. In addition, we will write C'r for the ideal class group Zz /Pr
of F and hy for its order. The group of units in F will be denoted by U. F urther,
we will write S, for the set of archimedean primes of F'. For v € Sy, U, (resp.
U,) will denote the group of units in F, (resp. F,). If v € S, we set U, = F¥
(resp. U, = F). We now recall that the invariant map inv, : Br(F,) — Q/Z
of local class field theory induces isomorphisms Br ,) ~ Q/Z if v is non-
archimedean, Br(F,) ~ $Z/Z if v is real, and Br(F,) = 0 if v is complex. Now
let K/F be a finite Galois subextension of F//F with Galois group G. For eac h
prime v of F, we will write w for the prime of K lying below the prime v of F
chosen previously.

LEMMA 6.1: There exists a canonical isomorphism of G-modules
O =T (K, U).
Proof (After B. Poonen [20]): Set A = Gal(F'/K). Taking A-cohomology of
the natural exact sequence
0—=U—=F*— F*)JU—=0
and using Hilbert’s Theorem 90, we obtain a natural exact sequence
0= Ux = K* = (F* )02 L—HY (K, T) — 0,
where d is the usual connecting homomorphism in Galois cohomology. Using

the identification K*/Uk = Pk, we conclude that 07! induces an isomorphism

HY(K,U) = (F*JU)* | Pk.
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Now, since H! (K, U) is torsion and (F*/U) is uniquely divisible, (F* /U)? /Px
is canonically isomorphic to (Px ® Q)/Px (via the map [a] — [(ma) @ (1/m)],
where m is the order of the coset [a]). On the other hand, since Px@Q = Zx@Q
by the finiteness of Zx /Py, we conclude that there exists a natural isomorphism

HYK,U) = (Ix ® Q)/Px.
Similarly, for ev ery finite primew of K, there exists a canonical isomorphism
HY(Ky,Uy) = (22 Q)/L = Q/L

(the reader may ignore the archimedean primes of K since they play no role in
this proof). Now it is not difficult to see, by tracing through definitions, that
the localization map H'(K,U) — H'(K,,U,) corresponds, under the above
isomorphisms, to the map (Zx @ Q)/Px — Q/Z which is induced by the w-
adic valuation map Zx — Z, i.e., by the map which assigns to a fractional
ideal a € Zx the exponent of w in its factorization. It now follows easily that
the subgroup II' (K, U) of H'(K,U) is canonically isomorphic to the subgroup
Cx =Ik [Pk of Tk @ Q)/Pk. [ |

There exists an exact commutativ e diagram

0— H'(G,Ux) —— H'(F,U) HY(K,U)¢ H?(G,Ug)

| | | |

00— Hle(GWUw) - Hle(Fv:Uv) - Hle(I{w-,Uw>Gw - HUHQ(GM:UM)

in which the rows are (induced by) the inflation-restriction exact sequences, the
products extend over all primes v of F' and, for each such prime v, w is the
prime of K lying above v fixed previously (note that we have used‘semilocal
theory” [4, §2.1]). An application of a variant of the snake lemma [10, Lemma
1.7] to the above diagram, together with Lemma 6.1, yields

THEOREM 6.2: Let K/F be a finite Galois extension of number fields with
Galois group G. Then there exists a natural complex of finite abelian groups

0— (G, Uk) = Cr — C¢ — (G, Ug)

which is exact except perhaps at Cg, where its homology is a (finite) subgroup
of b (G, Uk). ]

As immediate consequences of the theorem, we have
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COROLLARY 6.3: Let K/F be a finite Galois extension of number fields with
Galois group G of exponent e. Then there exists a rational number rq, whse
numerator and denominator are divisible only by primes that divide e, such that

[CE] =710 hp.
In particular, a prime pfe divides [C$] if and only if it divides hp.

COROLLARY 6.4: Let K/F be a finite Galois extension of number fields with
Galois group G. Assume that b' (G, Uy ) = I*(G, Uk ) = 0. Then the canonical
map Cr — O% is surjectiv e.

COROLLARY 6.5: Let K/F be a finite Galois extension of number fields with
Galois group G. Assume that ]]Il(G., Uk)=0. Then hp divides hy.

Remarks: (a) For each finite prime v of F, H'(G,,U,) is a (cyclic) group
of order e(w/v), where e(w/v) denotes the ramification index of K,,/F,. See
[24, Proposition 47, p. 154]. It follo ws that b (G, Uf) is a finite group of order
dividing ], 45 e(w/v).

(b) If K/F has the property that K,,/F, is cyclic for every finite prime v of
F, then [[, H*(Gy,U,) is a finite group of order

[1IH (G U] = 275 T etwfo),

v VE S

where 7+ (K /F) denotes the number of real primes of F' which ramify in K. See
[13, Lemma IX.3.4, p. 188]. In particular, if K/F' is unramified at all primes
of F, then, by (a) and the theorem, there exists a natural exact sequence of
finite groups

0= HYG.Ux) = Cp = C — H*(G,Ug).

See the Appendix for a generalization of this fact. The preceding exact sequence
has the follo wing “amusing” consequence. Let K be the Hilbert class field
of F. Then, by the Principal Ideal Theorem [19, Theorem 8.6, p. 107], the
canonical map Cr — Cg is zero. Consequently, the abo veexact sequence

yields a canonical isomorphism
Cr=H'(G,Uxk).

Therefore every ideal class in F' may be represented by a 1-G-cocycle with values
in the group of units of the Hilbert class field K of F, where G = Gal(K/F).
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(c) Let T be the F-torus corresponding to the free and finitely generated
[-module Uk /tors, and assume (for simplicity) that H%(G, Uk tors) = O (this
holds, for example, if the order of Uk tor, i.€., the number of roots of unity
contained in K, is prime to the order of G). Then there exists a canonical
injection

M? (G, Ur) < M?(G, Ug /tors).
On the other hand, by Nakayama-Tte duality, lI*(G, Uy /tors) is canonically
isomorphic to the dual of ' (F, T) (see [22, Lemma 1.9, p. 19]). Consequently
*(G,U) = 0 if IT' (F,T) = 0. The latter holds, for example, if G is meta-
cyclic (][22, Corollary 5.3, p. 34]).

Now let G be any finite group and let M be a finite Z[G]-module. Since Z is
not sufficiently large for GG, the results of §§3 and 4 do not immediately apply
to M. Consequently, we need to “extend scalars”. Let R = Z[(.], where e is the
exponent of G and (. is a fixed (complex) e-th root of unity. Clearly, R = Z[(,]
is a free Z-module of rank p(e), where ¢ is Euler’s function. Define

M=M®ZR.

Then M is a finite R[G]-module (with G acting trivially on R), of order [M]#(¢).
More precisely, let B = {¢!: 0 < i < ¢(e) — 1}. Then the elements of M may be
regarded as formal linear combinations of elements of M with coefficients in B,
i.e., an yzr € M may be written, uniquely, in the form

e(e)—1 .
(8) T = Z m; (.,
i=0
where the m; € M.
We now apply Theorem 3.1 to the R[G]-module Cx = Cx @z R. Using
Corollary 6.3, we obtain the following result.

THEOREM 6.6: Let K/F be an abelian extension of number fields with Galois
group G of exponent e. Then there exists a rational number r, whose numerator
and denominator are divisible only by primes that divide e, such that

(hi /b)) =r- ] [Ck]-
x€G
x#x0

Writing each factor [C'] in the formula of the theorem as [¢, C ][HY(G. Cr)],
w e concludethat there exists a rational number 7', whose numerator and de-
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nominator are divisible only by primes that divide e, such that
(9) (hi/hp)? ) =v" ] lexChxl-

x#X°
F or example, ifG is a p-elementary abelian group for some prime p, then (9) is
an identity of the type

(hi/hp)P~t =p' ] lexChxl,

x7#x°

where t is an integer which may be positiv e,negative or zero. When p = 2,

the situation is particularly simple, since in this case there is no need to extend
scalars (R = 7). We have

COROLLARY 6.7: Let K/F be a finite Galois extension of exponent 2. Then
there exists an integer t such that

hic/he =2 ] [exCxl,
x#x°

where the product extends over all non-trivial characters of G.

Regarding the formula of the corollary, the factors [e,Cx] wic h appear on
the right-hand side seem to be related to the class numbers of the various subex-
tensions of K/F. See below.

Example (Cf. [27, Theorem 10.10, p. 191]): Let K = Q(y/d;,+/d2) be a bi-
quadratic extension of the rational field, where d; and dy are squarefree integers.
Let x; ( = 1,2, 3) be the nontrivial ¢ haracters ofG = Gal(K/F), numbered so
that L; = Fix(Ker y;) = Q(1/d;). where d3 = didz. Write

(1,7} = Gal(K/L1), {1,0} = Gal(K/Ls), {1,07}= Gal(K/Ls),

and set ey, =¢; (j =1,2,3). Thene; = (1 -0)(1+7), 2 = (1 = 7)(1 +0)
and e3 = (1-7)(1—0). We havee,Cx = (1 —0)Ng/r,Cr. Further,o acts on
N1, Ck as multiplication by —1 since

(1 +0)NK/L10K = NLl/QNK/Lch =0.

It followsthat [¢;Ck] differs from hy < [CLJ by a pow erof 2. Similarly,
[e2C k] differs from hy = [Cf,] by a power of 2. On the other hand, e3Cx =
(1-=7)(1+07)Ck = (1 = 7)Ng/1,Ck, and we conclude as before that [e3C]
differs from hs = [C,] by a pow er of 2. Summarizing, there exists an integer ¢
such that

hic =2 hyhyhs.



Vol. 144, 2004 FINITE MODULES OVER NON-SEMISIMPLE GROUP RINGS 87

Remarks: (a) The formula of the example is not new. A precise version of it
[7, Theorem 74, p. 320] follows from the classical Brauer relations [7, Theorem
73, p. 315]. More generally, if K/F is any Galois extension of number fields of
type (2,2), F. Lemmermeyer [14] has obtained a formula of the type

hi = 2'hihohs /B2,

where ¢ is an integer whose precise value is given in [14, p. 247]. Lemmermeyer’s
formula has been recently generalized by B. de Smit [6], who used a certain
“Brauer relation” to obtain the follo wing result. Let K/F be a finite abelian
extension of number fields with Galois group G ~ (Z /pZ)™, where p is a prime
and m > 2. Then there exists an integer ¢ such that

(10) hihg b =p" [ b
[L:F]=p
where g = (p™ — 1)/(p — 1) is the number of subgroups of G of index p (for
the precise value of ¢, see [6, p. 140]). Note that the preceding formula may be
written as
hic/he =p" T (he/hr),
[L:F]=p
so it seems likely that (10) may also be obtained by repeated application of The-
orem 6.6 above. When F' = @, (10) has the following interesting consequence:
a prime q # p divides hy if and only if ¢ divides hj, for some subextension L/Q
of K/Q of degree p.

(b) As mentioned earlier, the factors [C'] interv ening in the formula of The-
orem 6.6 appear to be related to the class numbers of the various subextensions
of K/F. Further, the actual computation of %] in terms of class numbers of
subextensiomsf K /F seems to be a problem in linear algebra. For example,
if 7 is a fixed generator of G and Y is given by x(7) = (,, then there exists a
natural isomorphism

Cr~{me C’f((n): 7m = Am},

where A is the companion matrix? of the n-th cyclotomic polynomial &, (z)

(this follo ws from (8)). However, we do nt yet know if Cp (2 < i <n —1)
admits a similar description. In any case, it seems likely that the identity

Nijp= [ @a")
d|[K:L]
d>1

4 Or the transpose of the companion matrix, depending upon which definition
of “companion matrix” one adopts.
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will play a role in the computation of [6?] in terms of the class numbers of the
various subextensions of K/ F.

(¢) Let p be an odd prime and let K = Q((,)" be the maximal real subfield
of Q(¢p). Let ht be the class number of K. Then formula (9) (for F = Q) is

()= =0 T [,

x#x°

where 1’ is a rational number whose numerator and denominator are divisible
only by primes that divide (p — 1)/2. In particular, p divides h* if and only
if p divides [e,Ck] for some (non-trivial) character x of G, i.e., V andier’s
conjecture holds for p if and only if p does not divide [SXUK} for every non-
trivial character xy of G. Regarding this w ell-known conjecture, the results of
this paper seem to indicate that the following statement is true: p does not
divide h'* if and only if p does not divide hy for every subextension L/Q of
K/Q of prime degree.

THEOREM 6.8: Let K/F be a finite Galois extension of number fields with Ga-
lois group G suc h that every Sylow subgroup of G is either cyclic or generalized
quaternion. Assume, in addition, that the following conditions hold for each
subextension L/F of K/F' of prime index.

(a) K/L is ramified at some prime, and

(b) bY(H,Ux) = I*(H,Ux) = 0, where H = Gal(K/L).
Then the G-module C is cohomologically trivial.

Proof: Hypothesis (a) implies that K NH, = L, where H, is the Hilbert class
field of L. Now a well-known consequence of class field theory [12, Lemma on
p. 83] shows that the canonical map Cx — Cr,{a} = {Ng,pa}, is surjective.
On the other hand, by Corollary 6.4, hypothesis (b) implies that the natural
map C — CH is surjective. We conclude that the norm map Nk Cx — cl
is surjectiv e, i.e.fIO(H, Ck) = 0. The theorem now follows from Corollary 4.5.
|

Remarks: (a) Condition (a) of the theorem holds if K/F is ramified at some
prime and its Galois group is cyclic of p-power order, where p is a prime. In-
deed, let v be a prime of F' ha ving a nortrivial inertia group I(v, K/F'). Then
I(v, K/F) contains Gal(K/L), where L/F is the unique subextension of K/F
of index p. It follows that K/L ramifies at a prime of L lying abovewv.

(b) Regarding condition (b) of the theorem, see Remark (c) following the
statement of Corollary 6.5.
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Appendix

In this Appendix w euse étale cohomology to establish certain varian tsof
Corollary 6.3 above. See Theorem A.4 and Corollary A.5 below.

We keep the notations introduced in Section 6. In particular, K/F is a finite
Galois extension of number fields with Galois group G and, for each prime v
of F, w is a fixed prime of K lying above v. We will also need the following
notations: S will denote the set of primes of F' formed by collecting together the
arc himedean primes of F' and therimes that ramify in K/F, Sk will denote
the set of primes of K lying above the primes in S and, for any prime v of F, n,
will denote the local degree [K,,: F,]. Further, ve will write Ng for the least
common multiple of the integers n, (v € S). The notations O s, Ur,s, Cr,s
and hps will refer to the ring of S-integers, the group of S-units, the S-ideal
class group and the S-class number of F', respectively. When S = S, i.e., when
K/F is unramified at all finite primes of F, we have Ops = Of, Up s = Up,
Crs = Cp and Ng = 2min(Lr<(K/F)) “where 1o (K/F) denotes the number of
real primes of F' which ramify in K/F.

We begin by observing that the natural map Spec Ok s, — SpecOps is
a finite, étale and surjectiv emorphism of degree [K: F], i.e., it is a Galois
covering with Galois group G. Now the Hochschild Serre spectral sequence in
etale cohomology

H?(G, H{, (Spec Ok s, .Gy )) => HL ' (Spec Op.s, Gpy),

where G, is the multiplicative group scheme, gives rise to the following exact
sequence of finite groups, known as the Picard—Brauer exact sequence:
(11)

0— H'Y(G,Uk,s,) = Crs = C{s. = H*(G,Uks,.) = B(Ors,Ok,s, )

- Hl(Gch,SK) - HB(GvUK,SK)v

where
B(OF’S, OK,SK) = Ker[Br OF,S) — Br C)K,SK)G]~

See [18, p. 309] and [16, Proposition 11.2.1, p. 201], and note that w ehave
identified Pic Of,s) and Pic(Ok, s, ) with Cps and Ck s, , respectively (cf.
[11, Example 11.6.3.2, p. 132, and Corollary 11.6.16, p. 145]).

LEMMA A.1: We have

1
B csi)] = == [ ne:
[ (OF‘7S,O[ 7SK)] NS n :
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where Ng is the least common multiple of the integers n, (v € S).

Proof: By [16, Proposition 11.2.1, p. 201] and “semilocal theory” [4, §2.1] (see
also [26, §11, (7), p. 194]), there exists an exact commutativ e diagram

0—Br Ons) — > @,cs Br(F,) = )z

| l |

0 —= Br(Or.5, )¢ —= @, Br(K,)0» =22 /z.
Consequently, B(Or s, Ok, s, ) is isomorphic to the kernel of the map
Zinvv : @HQ(GM,K;) — Q/Z
vES
(see |23, Corollary, p. 156]). On the other hand, local class field theory allows us

to identify the latter map with the summation map S: @, cgn, 'Z/Z — Q/Z.
Now [9, Lemma 1.2] completes the proof. |

PROPOSITION A.2: Let K/F be a finite Galois extension of number fields with
Galois group G. Assume that K/F is unramified at all finite primes of F'. Then
there exists a natural exact sequence of finite groups

0— HY(G,Ux) = Cr = C% = H*(G,Ux) = B(Or,Ok),

in which B(Op,Ok) is a group of order 2Ma (r=(K/F)=1) " where r. (K/F)
denotes the number of real primes of F' which ramify in K/F. In particular, if
at most one real prime of F' ramifies in K/F, then there exists a natural exact
sequence®

0— HY (G, Ux) = Cp = CS = H*(G,Ug) = 0.
Proof:  This follows by setting S = Sy, in (11) and using Lemma A.1. |

COROLLARY A.3: Let F' be a number field and let K be the Hilbert class field
of F. Write G = Gal(K/F'). Then there exist canonical isomorphisms

Cr=H"(G,Ux) and C% = H*(G,Ug).

Proof: As already noted (cf. Remark (b) following the statement of Corollary
6.5), the Principal Ideal Theorem [19, Theorem 8.6, p. 107] implies that the nat-
ural map Cr — C% is zero. The result is now immediate from the proposition.
|

5 Cf. Remark (b) following the statement of Corollary 6.5.
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THEOREM A.4: Let K/F be a cyclic Galois extension of nunber fields with
Galois group G of order n. Then there exists an integer d, which divides the
order of HY(G,Ck.s, ), such that

(n/Ns) - [Cf s ]=d hps.

Proof: This follows at once from Lemma A.1 and the exactness of (11), using
the fact that the Herbrand quotient of Uy s, equals (1/n)][],csnv (see, for
example, [19, Theorem 1.3, p. 74]). |

COROLLARY A.5: Let K/F be a cyclic Galois extension of number fields with
Galois group G of order n. Assume that K/F is unramified at all finite primes
of F. Then there exists an integer d, which divides the order of H(G,Cx)
such that

n- [CI(?} =d- 2111i11 (1Tx(K/F))hF.

In particular, if PAIO(G,C'K) =0 (cf. Theorem 6.8), then

n- [C}(\i} — 2lnin(1,rx(K/F))hF. ]
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